Global Hydrogen Review: Assumptions annex

nternational Energy Agency

INTERNATIONAL ENERGY AGENCY

The IEA examines the full spectrum of energy issues including oil, gas and coal supply and demand, renewable energy technologies, electricity markets, energy efficiency, access to energy, demand side management and much more. Through its work, the IEA advocates policies that will enhance the reliability, affordability and sustainability of energy in its 31 member countries, 13 association countries and beyond.

This publication and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area.

IEA member countries:

Australia Austria Belgium Canada Czech Republic Denmark Estonia Finland France Germany Greece Hungary Ireland Italy Japan Korea Lithuania Luxembourg Mexico Netherlands New Zealand Norway Poland Portugal

Sweden Switzerland Republic of Türkiye United Kingdom

United States

Slovak Republic

Spain

The European Commission also participates in the work of the IEA

Source: IEA.

International Energy Agency Website: www.iea.org

IEA association countries:

Argentina
Brazil
China
Egypt
India
Indonesia
Kenya
Morocco
Senegal
Singapore
South Africa
Thailand
Ukraine

Global Hydrogen Review 2024: Assumptions annex

This annex collects the various assumptions that underpin the analyses throughout the *Global Hydrogen Review 2024*. For technologies, global averages are presented. However, several analyses in the report present regional examples, for which costs will vary with material and labour inputs and differ from the global average. These input parameters reflect choices made by the IEA on the basis of different sources of information consulted.

Renewable electricity cost and full load hours

Solar PV

	LCOE (l	JSD/MWh)	Full load hours (h)
Region	2023	NZE 2030	
Australia	32	24	2330
Chile	23	17	3060
China	22	16	2550
European Union	34	25	2170
India	25	18	2550
Japan	116	87	1340
Middle East	20	14	2810
North Africa	46	32	2680
United States	37	27	2490

Offshore wind

	LCOE (L	ISD/MWh)	Full load hours (h)
Region	2023	NZE 2030	
Australia	63	45	4990
Chile	85	61	5890
China	67	48	4120
European Union	55	36	4790
India	90	64	4100
Japan	145	99	4530
Middle East	120	85	4050
North Africa	113	80	4180
United States	86	60	4940

Onshore wind

	LCOE (L	ISD/MWh)	Full load hours (h)
Region	2023	NZE 2030	
Australia	39	36	3660
Chile	32	29	4220
China	33	31	3130
European Union	37	35	3690
India	45	39	3060
Japan	101	95	3290
Middle East	62	57	3280
North Africa	60	56	3240
United States	27	25	4420

Notes: LCOE = levelised cost of electricity; NZE = Net Zero Emissions by 2050 Scenario. Renewable electricity generation costs and full load hours for good resource conditions in a region or country.

CO₂ prices and costs

CO₂ prices

	CO ₂ price (USD/tCO ₂)		
Region	2023	NZE 2030	
Advanced economies	0-90	140	
Selected emerging market and developing economies*	0	90-130	
Other emerging market and developing economies	0	15-25	

^{*} Includes Argentina, Brazil, China, India, Indonesia, Mexico and South Africa.

CO₂ transport and storage cost for CCUS

	(USD/tCO ₂)		
Region	2023	NZE 2030	
United States	14	12	
Middle East	14	12	
Europe	49	33	
China	15	12	
Rest of the world	24	20	

Notes: CCUS = carbon capture, utilisation and storage; NZE = Net Zero Emissions by 2050 Scenario.

Production pathways

Hydrogen

Technology	Parameter	Units	2023	NZE 2030
Water	CAPEX* (global average)	USD/kW _e	2160	960
electrolysis	CAPEX* (China)	USD/kW _e	1100	620
	Efficiency (LHV)	%	66%	69%
	Annual OPEX	% of CAPEX	3%	3%
	Stack lifetime (operating hours)**	hours	50000	50000
Natural gas reforming	CAPEX	USD/kW _{H2}	720	720
	Efficiency (LHV)	%	76%	76%
	Annual OPEX	% of CAPEX	5%	5%
Natural gas reforming w/CCUS	CAPEX	USD/kW _{H2}	1420	1420
	Efficiency (LHV)	%	69%	69%
	Annual OPEX	% of CAPEX	4%	4%
	CO ₂ capture rate	%	95%	95%
Coal gasification	CAPEX ***	USD/kW _{h2}	2640	2640
	Efficiency (LHV)	%	60%	60%
	Annual OPEX	% of CAPEX	5%	5%
Coal gasification w/CCUS	CAPEX ***	USD/kW _{H2}	2750	2750
	Efficiency (LHV)	%	58%	58%
	Annual OPEX	% of CAPEX	5%	5%
	CO ₂ capture rate	%	95%	95%

^{*} CAPEX includes the electrolyser system, electric equipment, gas treatment, plant balancing, and engineering, procurement and construction (EPC).

Notes: LHV = Lower heating value; NZE = Net Zero Emissions by 2050 Scenario. All CAPEX refers to the installed cost of the technology. 25-year lifetime and a 95% availability factor assumed for hydrogen production from natural gas, 25-year lifetime and 90% availability factor are assumed for the production of hydrogen from coal. Availability factors for electrolysis are based on the full load hours of electricity shown in the previous section. For water electrolysis, water costs and possible revenues from oxygen sales have not been considered in the cost analysis.

[&]quot;Stack lifetime can reach up to 95 000 h. The selected value (50 000 h) comes from the IEA's analysis of the optimum economic lifetime, considering degradation issues.

^{***} For China, CAPEX is assumed to be 50% of the world average for coal gasification and 52% for coal gasification with CCUS

Hydrogen-based fuels

Haber – Bosch (Ammonia)

Parameter	Units	2023	NZE 2030
CAPEX (including air separation unit)	USD/(tNH ₃ /y)	770	770
Annual OPEX	% of CAPEX	3%	3%
Electricity consumption	GJ/t _{NH3}	2.2	2.2

Fischer-Tropsch (synthetic liquid fuels)

Parameter	Units	2023	NZE 2030
CAPEX	USD/kW _{liquid}	2160	1770
Efficiency (LHV)	%	57%	57%
Annual OPEX	% of CAPEX	5%	5%
Variable O&M	USD/MWh _{prod}	5.5	4.7
Lifetime	years	30	30
Electricity consumption	GJ/GJ _{product}	0.018	0.018

Notes: The efficiency refers to the final transport fuels, from the energy content of hydrogen used in the FT synthesis. Assumed cost of feedstock: biogenic CO_2 USD $30/tCO_2$, DAC CO_2 USD 600-1 $000/tCO_2$ (today), USD $200-700/tCO_2$ (2030)

Hydrogen transport

Hydrogen onshore pipelines

Parameter	Units	Small	Medium	Large
Lifetime - pipelines	years	42	42	42
Lifetime - compressor	years	24	24	24
Operation conditions	% of design capacity	75%	75%	75%
Diameter	inch	20	36	48
Design Capacity ¹	GW H ₂ , LHV	0.9	3.6	12.7
Inlet pressure	bar	30	30	40
Outlet pressure	bar	50	50	80
Utilisation	%	57%	57%	57%
Compression power	MW _e /1 000 km	6	40	183
CAPEX - new pipeline	MUSD/km	1.8	2.6	3.2
CAPEX - repurposed pipeline	MUSD/km	0.3	0.5	0.6
CAPEX - compressor	MUSD/MW _e	4.0	4.0	4.0

¹ With 75% of design capacity Notes: MUSD = million USD

Seaborne transport

Tankers

Parameter	Units	Liquefied hydrogen	LOHC	Ammonia
Capacity	t _{carrier} /tanker	10 200	34 700	51 800
CAPEX	MUSD/tanker	410	45	70
Speed	km/h	30	28	32
Boil-off rate ¹	%/day	0.60%	0.00%	0.02%
Flash rate ²	%	1.00%	0.00%	0.02%
Fuel consumption ³	MJ/km/tanker	-	1 770	2 650

¹ The boil-off gas is the gas that spontaneously evaporates from liquefied gas due to the extremely low temperatures.

Notes: MUSD = million USD.

 $^{^{\}rm 2}$ The flash rate is the rate of loss that occurs upon each loading/unloading of liquefied gas.

³ Ship carrying liquefied hydrogen uses carrier gas for propulsion, so the fuel for the ship would not incur an additional energy consumption.

Import and export terminals: storage tanks

Terminal	Parameter	Units	Liquefied hydrogen	LOHC	Ammonia
Import	Capacity	t _{carrier} /tank	12 800	3 300	36 700
	CAPEX	MUSD/tank	1 270	85	115
	OPEX	USD/year as a % of CAPEX	3%	3%	3%
	Electricity consumption	kWh/kgH ₂	0.190	0.013	0.003
	Boil-off rate	%/day	0.07%	0.01%	0.01%
Export	Capacity	t _{carrier} /tank	12 300	3 300	36 700
	CAPEX	MUSD/tank	1 160	85	115
	OPEX	USD/year as a % of CAPEX	3%	3%	3%
	Electricity consumption	kWh/kgH ₂	0.200	0.013	0.001
	Boil-off rate	%/day	0.07%	0.01%	0.01%
N. I. MUIOD	III. LIOD				

Notes: MUSD = million USD.

Liquefied hydrogen

Technology	Parameter	Units	Value
Liquefaction	CAPEX	USD/t H₂/day	NA
	OPEX	USD/t H₂/day	NA
	Electricity consumption	kWh/kg H₂	6
Regasification	CAPEX	USD/t H₂/day	20
	OPEX	USD/t H₂/day	1
	Electricity consumption	kWh/kg H₂	0.06

Notes: NA = not available due to confidentiality.

Liquid Organic Hydrogen Carrier (LOHC)

Technology	Parameter	Units	Value
Conversion⁴ to LOHC	CAPEX	USD/t H₂/year	790
	OPEX	USD/year as a % of CAPEX	4%
	Electricity consumption	kWh/kg H ₂	1.5
Reconversion ⁵ to H ₂	CAPEX	USD/t H₂/year	2 950
	OPEX	USD/year as a % of CAPEX	4%
	Electricity consumption	kWh/kg H ₂	1.50
	Fuel consumption	kWh/kg H₂	13.6
	Dehydrogenation rate	%	98%
	PSA hydrogen recovery rate	%	99%
	LOHC loss	%/cycle	1.50%

 $^{^4}$ Conversion: LOHC = Toluene +H $_2$ \rightarrow Methylcyclohexane (MCH).

Notes: PSA = Pressure swing adsorption. System lifetime assumed to be 30 years, unless stated otherwise.

Ammonia cracking

Technology	Parameter	Units	Value
Ammonia cracking	CAPEX	USD/t H₂/year	3 050
	OPEX	USD/year as a % of CAPEX	4%
	Electricity consumption	kWh/kg H ₂	1.50
	Fuel consumption	kWh/kg H ₂	9.7
	Dehydrogenation rate	%	99%
	PSA hydrogen recovery rate	%	99%

Notes: PSA = Pressure swing adsorption. Data for ammonia conversion are included in the table on ammonia production above.

 $^{^{5}}$ Reconversion: LOHC = MCH \rightarrow Toluene + H₂.

References

BNEF (2024). Electrolyzer Price Survey 2024: Rising Costs, Glitchy Tech.

Consultation with McKinsey & Company and the Hydrogen Council.

Energistyrelsen (Danish Energy Agency) (2021), Technology Data for Renewable Fuels, 2021, https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data/technology-data-renewable-fuels

E4Tech (2015), Scenarios for deployment of hydrogen in contributing to meeting carbon budgets and the 2050 target, https://www.theccc.org.uk/wp-content/uploads/2015/11/E4tech-for-CCC-Scenarios-for-deployment-of-hydrogen-in-contributing-to-meeting-carbon-budgets.pdf.

Guidehouse (2021), European hydrogen backbone: analysing future demand, supply, and transport of hydrogen, https://ehb.eu/files/downloads/EHB-Analysing-the-future-demand-supply-and-transport-of-hydrogen-June-2021-v3.pdf.

IAE (2016), Institute of Applied Energy (Japan) data based on "Economical Evaluation and Characteristic Analyses for Energy Carrier Systems (FY 2014–FY 2015) Final Report".

IEA (2023), Energy Technology Perspectives 2023, https://www.iea.org/reports/energy-technology-perspectives-2023.

IEAGHG (IEA Greenhouse Gas R&D Programme) (2017), Techno-economic evaluation of SMR based standalone (merchant) hydrogen plant with CCS, https://ieaghg.org/exco_docs/2017-02.pdf.

IEAGHG (2014), CO₂ capture at coal based power and hydrogen plants, https://ieaghg.org/docs/General Docs/Reports/2014-03.pdf.

National Energy Technology Laboratory (2022), Comparison of commercial, state-of-theart, fossil-based hydrogen production technologies,

 $\underline{https://netl.doe.gov/projects/files/ComparisonofCommercialStateofArtFossilBasedHydroge} \\ \underline{nProductionTechnologies_041222.pdf} \ .$

TNO (2024). Evaluation of the levelised cost of hydrogen based on proposed electrolyser projects in The Netherlands: Renewable Hydrogen Cost Element Evaluation Tool (RHyCEET), https://repository.tno.nl/SingleDoc?find=UID%20e5e1ab2e-ff69-48fb-8564-75f56282378c.

International Energy Agency (IEA)

This work reflects the views of the IEA Secretariat but does not necessarily reflect those of the IEA's individual Member countries or of any particular funder or collaborator. The work does not constitute professional advice on any specific issue or situation. The IEA makes no representation or warranty, express or implied, in respect of the work's contents (including its completeness or accuracy) and shall not be responsible for any use of, or reliance on, the work.

For further information, please contact: Hydrogen@iea.org

Subject to the IEA's <u>Notice for CC-licenced</u> Content, this work is licenced under a <u>Creative Commons Attribution 4.0 International Licence</u>.

This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area.

Unless otherwise indicated, all material presented in figures and tables is derived from IEA data and analysis.

IEA Publications

International Energy Agency

Website: www.iea.org

Contact information: www.iea.org/about/contact

Typeset in France by 2024 - October 2024

Cover design: IEA