Electric Bus Operation in Kolkata City

Rakhi Basu from the World Bank, Dr. Scott Moura, Preet Gill, Lin Osseiran, and Dr. Raja Sengupta from UC Berkeley, with ESMAP support

Questions	Answers
1. Bus numbers and targets	
1.1 How many total intra-city buses	9700
are owned and operated by WBTC	
and the private sector?	
1.1.1 How many intra-city buses are	1300
run and owned by WBTC only?	
1.1.2 How many intra-city buses are	8400
run and owned by private sector only?	
1.1.3 How many intra-city buses are	75
electric and are owned and run by	
WBTC?	
1.1.4 How many intra-city buses are	None
electric and are owned and run by	
private sector?	
1.2 What is the WBTC's goal in terms	In the first phase WBTC procured 80 electric buses, of which
of future deployment of number of	75 buses are in operation. Procurement of another 50 (12M)
electric buses and time frame?	buses is under process.
2. Technical specifications	· · · · · · · · · · · · · · · · · · ·
2.1 Are all e-buses air-conditioned? If	All electric buses are air conditioned
not, what percent are air conditioned?	
2.1.1 Given Kolkata's hot climate	Though time since the introduction of the buses is not enough
(especially in summer months), it	to draw any conclusion regarding choice of battery in the
would be illustrative if you can give	context of AC and non-AC buses, there are still some issues to
some figures on auxiliary consumption	be considered:
with and without use of air	1. If WBTC continues to increase AC buses in the city,
conditioning and how this affects	further analysis to be done related to what extent AC
choice of battery.	buses will contribute to pollution
	2. The electricity consumption for electric buses is
	roughly around 200 units per day (20 ton AC capacity
	with a hourly consumption of 20/unit, with 10 hours of
	operation it comes to 200 per unit). There is a
	resulting increase of operational cost and reduction of
	battery life as well with ACs. The impact of AC on
	battery life needs to be calculated.
2.2 Please provide cost or investment	The difference of CAPEX between AC electric buses already
figures of electric buses and their cost	procured and existing AC diesel buses is not significant
comparison with 9- and 12-meter	enough. In the procurement of the buses, the difference
diesel buses (actual figures for	between the lowest bidder and the 2 nd lowest bidder was
Kolkata)?	around 50 lakh (cost of 9 meter EV bus was Rs.72,00000 &
	12m was Rs. 82,00000 compared to Rs. 70,00000 for a diesel

Questions	Answers
	bus). But operating cost varies significantly. Presently
	comparison may be done for fuel cost only as maintenance
	cost is very low in the initial 1-2 years for any bus. Electricity
	cost for EV is roughly INR14.00/km while diesel cost for diesel
	operated bus is INR35.00/km
2.3 What is the range in km of a 9-m	70 and 95 km respectively, with full charge
and 12-m electric bus in single full	
charge of 125 kwn and 188 kwn	
2.4 What is the bettery chemistry? Are	NIMC (Nickel Manganasa, scholt) betteries are being used
2.4 What is the battery chemistry? Are	NMC batteries have longer life, high energy density and have
something also (nl. specify)? And	low cost Their high density permits compact and light weight
what is the reason for choosing the	designs
hattery chemistry?	
2.5 What is the average electricity	Average electricity consumption for 12M bus is 1.06 km/kWh
consumption in a 9-m and a 12-m	and for 9M bus it is 0.95 km/kWh.
electric buses in km/kWh?	Total average km/kWh is 1.05
2.6 What would be the impact on bus	In general, battery comprises of almost 40% of the cost of the
capital cost if the battery capacity is	vehicle so it will increase accordingly. Battery pack price is
increased due to increase in price of	around USD 230/kWh
battery? PI. provide actual figures to	
illustrate how big the impact is?	
3. Charging model and deployment of	charging infrastructure
3.1 Any plans for upgrades of charging	Without the implementation of proper algorithm for charging
infrastructure and impacts on the	/ opportunity charging and replacement of EV with diesel
distribution grid? Please elaborate.	buses to maintain normal route service, it is not possible to
	justify upgrades of the existing infrastructure. A study is
	required to estimate maximum number vehicles / routes
	which can be catered with the existing infrastructure.
3.2 What's the distribution of each	The number of fast chargers went up in the actual operation
charging intrastructure – slow (60 kW)	by 10% for 80 buses. Total fast charger under the Initial
and fast (120 kW) chargers (e.g. 90%	estimate was 25, now it is 30.
charging) Planned versus reality?	00% slow chargers, 40% last chargers
3 3 How many chargers/guins per hus?	82 chargers and 75 huses
3.4 Time taken from 0 to full charge in	Battery will be charged in 2-3 hours using fast charge 3-4
9-m and 12-m bus in slow and fast	hours slow charge
chargers?	Fast charger for 9m charges at 80 ampere
	Avg 2 to 2.5 hours
	12 m – 3.0 hours
	Approximately (this is being calculated)
	From 94% to 100% takes 30 to 40 mins
	From 0-90 SOC it is 1.2 mins/unit. Once it crosses the 92% SOC
	the current rate at which it is charging it goes down

Questions	Answers
3.5 What is the reason for choosing	Standard is same for all the 80 electric buses, as Bharat
the Chinese standard – GB/T? Is it the	charger specification also followed GB/T. At that time GB/T
same for all 80 Tata e-buses, or was it	was the most prevailing standard
a requirement by WBTC?	
3.6 What is the cost of charging in	Commercial tariff applicable for charging the buses. Flat rate
Rs/kWh? Is this a flat rate?	INR14.00 / kWh including average installation cost.
3.7 Does the charging cost include	Yes
demand and energy charges?	
4. Total cost of ownership and energy	cost comparison - diesel vs electric bus
4.1 What is a comparative TCO for	
diesel and electric bus both fully air-	INR35 00/ km for diesel
conditioned?	INR14 00 / km for EV
	Capex: Diesel AC 12 meter: 74 lakh
	EV 12 meter: 82 lakh
	Going forward: 12m FV buses will cost 1.4 crore which makes
	EV huses double the cost of diesel
	The operational cost of future EV buses at 1.5 crore will go up
	because the interest cost on the bus capital cost will be
	included in the operating cost. Future operating cost will
	include fuel + interest on the caney. This model is the future
	oney model for the additional 50 buses that have been
	procured where the cost is Ps. 75/km, revenue is Ps. 62/km
	procured where the cost is Ks. 75/km, revenue is Ks. 62/km.
4.2 What is the energy cost of	INR 14/km for electric buses INR 35/km for diesel buses
operating a diesel bus compared to	
electric? Is this true that energy cost	
of operating electric buses is half that	
of diesel? Can you give some numbers	
in Bs/km and in Bs/kWh for both hus	
categories?	
5 Institutional implementation	
5.1 Please elaborate on the husiness	The 80 buses under FAME I have been procured under CADEV
5.1 Flease elaborate off the busiliess	model where WPTC is taking care of both operation and
among hus manufacturor WRTC	maintenance of huses. Subsidy received under EAME L. Under
charging infrastructure provider	EAME II buses are procured under OPEV model where
utility relevant regulatory authorities	PAIvie in puses are produced under OPEA model where
financing institutions for doily bus	operator will be paid liked rate (KS. 75) per kill and will take
anarction Describe the institutions	denote and terminus
operation. Describe the institutional	depots and terminus
arrangement and roles and	
responsibilities of each stakeholder.	
5.2 What are the key lessons learned	Key lessons:
including key successes, innovative	
<pre>tinancing, associated risk?</pre>	

Questions	Answe	rs
	1.	The implementation of EV project is in the preliminary state now. Therefore, success story lies only with the launching process. There is a long way to go to get the tangible benefits out of it.
	2.	Currently, the buses are being underutilized due to a minimum range anxiety. Although drivers have an incentive to complete 3 to 4 full trips, buses are returning to the depot with 40-50% SOC, due to range anxiety. These are dead SOCs. An automatic monitoring and planning tool will be created for better utilization of the buses. Right now it is left to the driver's discretion when to bring the bus back.
		Confidence to be built up amongst the drivers to run the EV with SOC below 30-40%. The operation needs to be improved at least to run it up to the SOC level of 15%. With operational data analysis, this can be done.
	3.	Detailed study and analysis is required before going for further procurement.
	4.	If the estimated period for complete replacement of diesel vehicles with EV is say 8 years, then separate study is required for the crucial transition period because to get maximum benefit of EVs there is a need for mixed operation with both diesel and EV and this requires dedicated controlling of operation through dedicated team and proper planning.
	5.	Average SOC before starting the charging operation is 50%. This is too high to get the actual benefit. This is to be reduced at the earliest.
	6.	Decision on battery size for future bus procurement cannot be taken as of now due to under-utilization of existing buses.
	7.	Driver dependency on decision making process for opportunity charging to be automated with software algorithm to increase per day km run.
	8.	Innovative OPEX model has been chosen for next phase of procurement. The risk involved in the same will have to be analyzed after the implementation.
	9.	Extensive planning is required in implementing dispatch priority of EVs.

Questions	Answers
	Operational insights: Approximately, \$316,000 saved in operating cost in 9 months. Total EV km in 9 months: 1,800,000 km =1,300,000*14 = Rs. 25,200,000 = \$360,0000 @ Rs 70 exchange rate Projected operating cost diesel+ Rs. 1,800,000*35= Rs. 63,000,000 = \$900,000 Profit = \$900,000-\$360,000=\$540,0000
5.3 What is the current thinking on optimizing electrical connectivity requirement to reduce the connectivity cost, demand charges, etc.?	Utilization of available capacity of existing transformers. Optimization of route and planning of operation of buses to optimize charging time which will subsequently reduce the number/time of charging sessions in the depots
6. Positive and negative impacts	
6.1 Reliability of bus operation: Electric buses have priority over diesel buses vis a vis dispatch. Can you expand a bit on reliability? Any operational data comparing reliability of diesel vs e-bus (to make it fairer, new diesel vs new e-bus, as there isn't much history yet)? Any impact on operations, for example, that you need more frequent charging than modelled, and thus you are requiring a larger fleet size? Was it a 1:1 replacement?	A diesel bus does 6 roundtrips per day which is double the trip done by a EV, because of EV charging optimization issues. EVs are underutilized and deployed in a limited way in the evenings.
6.2 Cost of bus operation: How does the cost compare between a diesel and electric bus in a common unit?	Energy cost – e-bus- INR14/km – diesel bus –INR30/km Diesel (INR) Capex: 70,00000 Maintenance cost/km: Rs 4-5 Operating cost/km: Rs. 35 Salary cost per km: Rs. 40 EV (INR) Capex: 82,00000 (current); 14,000,000 (future) Maintenance cost/km: Rs 8-10 Operating cost/km: Rs. 14 Salary cost per km: Rs. 40
6.3 Ridership issue: Has there been any survey conducted to capture passenger's preference? If so, is there	The question of preference does not arise at all. The percentage of EV is less than 1% as of now.

Questions	Answers
any preference? Or, are we assuming	
because of high demand, passengers	
take whichever type of bus comes	
first?	
6.4 Local pollution versus GHG	Currently the figures are not available
emissions: What is the perception? Is	
there any analysis to substantiate	
this?	
6.5 Distribution grid: Can you put	In all the depots and terminus additional transformers have
some numbers on need for additional	been installed except for Nonapukur depot where existing
transformers based on available	capacity is being utilized.
analysis and the results? I imagine	Of the 10 depots, 9 depots needed new transformers. One
there is no impact in terms of energy,	depot had a relatively new transformer. WBTC paid for the
but there is in terms of increased	transformer.
power loads.	
6.6 New transformers installed: WBTC	Three connections of 105 kW have been acquired by WBTC.
has acquired three connections in	Route optimization and opportunity charging help the buses to
each depot from the utility which	get ready for operation next day with three connections for
enables them to charge three buses	overnight charging.
simultaneously. Power level? Only	The current infrastructure of 10 depots and 10 transformers
three buses at a time in each depot?	can support more than 80 buses. However, the determination
Considering charging time, is this	of the optimal number of buses this infrastructure can
enough to charge the whole fleet so it	support, has not been done.
will be fully ready by the start of	
operations in the morning?	The real test is pending until procurement of significant
	number of EVs is done.
6.7 Availability of charging	Kolkata Municipal Corporation has planned to install EV
Infrastructure for other EVS -	charging stations for vehicles other than buses in and around
taxis/cars/trucks: Are there charging	the city. Presently there is no question to share EV
truck floats? How about private 2	The in Kelkete
and 4 whoolors? Also, are there	EVS III KOIKala.
shared EV operators such as Lithium in	
Kolkata? If so where do they charge?	
7 Challenges	
7.1 What are the critical challenges for	• Cost of sotting up of public sharging station which is your
electrification of buses and other EV/s?	• Cost of setting up of public charging station which is very high (municipal charges for cabling, dedicated 11kV line
ciccumcation of buses and other Evs:	transformer etc.) and considering the number of EVs on the
	road negative ROL is expected
	High hattery cost
	 Snace will be a major constraint as with increase in number
	of huses denots to be reported with infrastructure up
	gradation and few denots need to be extended. Terminus
	for apportunity charging need to be developed as spaces in
	terminus will be an issue with increase in number of buses.

Questions	Answers			
	 Centralized control room is required for charging operation monitoring particularly for opportunity charging as 			
	opportunity charging is the key to achieve the desired			
	target.			
7.2 What is the current thinking on	Currently in India RE constitutes 37% of the total installed			
greening the power grid given India's	capacity which is more than one third of the capacity.			
heavy reliance on coal-fired power	Considering India's target of 175 GW of RE by 2022, greening			
generation?	the grid is on track and public charging stations can use solar for catering the charge load			
	WBTC has already taken the initiative to run the charging			
	stations with solar power. The first project for this will be			
	implemented at Kasba Depot. This will certainly reduce			
	dependency on coal-fired power generation and will achieve			
	100% pollution free bus operation.			
7.3 What are the other transportation	Vast number of private bus operators running on old diesel			
challenges beyond electrification?	buses, under-utilization of trams, inefficient and polluting			
	diesel boats, streamlining e-rickshaw operations, use of engine			
	vans in Sundarbans which are major source of pollution.			
8. Excel Data Sheet on Hourly Bus Operation over say last 4 months				
8.1 Please arrange and supply data for	Not available with us. WBTC is having the data. It will be			
each electric separately bus hourly	good if you can request them to share the available data.			
data over time with respect to (i)	However, it will be difficult to assess 4-month data as most of			
cumulative distance traveled, (ii) SOC	the data is captured on hard copy.			
distribution with % of time dedicated				
for opportunity charging, and (iii)				
electricity use pattern (km/kWh) at				
different levels of SOC %.				